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a b s t r a c t

Nowadays, there are many geospatial information from different sources such as satellite images, aerial
photographs, maps, databases and others. They provide a comprehensive description of geographic
objects. However, the task to identify the geographic domain is not an easy task, because it involves a
semantic processing related to inference approaches that are based on the conceptualization of a domain.
These approaches allow us to understand in a similar way that human beings recognize the geographic
entities and help us to avoid vagueness and uncertainty. In this paper, a methodology to perform a
qualitative spatial reasoning in geospatial representations is proposed. It is based on a priori knowledge,
which is explicitly formalized by means of an application ontology. The knowledge described in the
ontology is assessed according to a set of labels, belonging to any geographical domain for semantic
analysis and mapping those labels to matching concepts defined in the ontology. As result, a set of
geographic domains ordered by their relevance is obtained, providing a general concept directly related
to the input labels, simulating the way that we perceive cognitively any geographic domain in the real
world.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Reasoning about spatial data is a key task in many applications,
including geographic information systems (GIS), meteorological
and fluid-flow analysis, computer-aided design, and protein
structure databases (Guesgen, Ligozat, Renz, & Rodríguez, 2008).
Such applications often require the identification andmanipulation
of qualitative spatial representations, for example, to detect
whether one object will soon occlude another in a digital image or
determine efficiently relationships between a proposed road and
wetland regions in a geographic data set. Qualitative spatial
reasoning (QSR) provides representational primitives (spatial “vo-
cabulary”) and inference mechanisms for these tasks (Bailey-
Kellogg & Zhao, 2003). QSR has two primary goals: providing a
symbolic model for human common-sense level of reasoning and
s), eduardo.loza@gmail.com
labi), jguzmanl@cic.ipn.mx
), marcomoreno@cic.ipn.mx
providing efficient means for reasoning (Wolter & Lee, 2010).
The ability to perceive spatial objects and to reason about their

relationships seems effortless for humans but it has proved that
these actions are so difficult for computers. They have already
attained the capabilities of a five-year-old child. Part of the
computational problem lies in the difficulty of identifying and
manipulating qualitative spatial representations. For example,
although the pixels in a digital image define the locations of spatial
objects implicitly, the task at hand might require a more qualitative
characterization of the configuration of these objects, whether one
object will soon occlude another (Bailey-Kellogg & Zhao, 1999).

Up-to-date GIS are becoming increasingly popular methods for
representing and reasoning with geographical data (Elmes et al.,
2005; Goodchild, 2009). These applications require methods of
logical reasoning about geographical features and the relationships
that hold between them, including spatially (Hobbs, Blythe,
Chalupsky, & Russ, 2006; Lei, Kao, Lin, & Sun, 2009). The
reasoning algorithms are widely used in the Artificial Intelligence
field, whose the most relevant tasks are the capability of verifying
the consistency of data sets, updating the shared knowledge,
deriving new knowledge and finding a minimal representation
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(Donnelly, Bittner, & Rosse, 2006; Hernandez, 1994).
However, before performing any reasoning task, it is necessary

to take into account a formal representation that allows us to
conceptualize the domain knowledge of our interest (Renz, 2002;
Buder & Schwind, 2012). In this case, ontologies are powerful
tools to conceptualize any context, describing its concepts and
expressing its relationships (Zhou, Ding, & Finin, 2011). Ontologies
have also been cited as a method to carry out this reasoning (Mark,
2003; Egenhofer & Mark, 1995), but there are methodologies that
do not handle the inherent vagueness adequately (Sharma, 1996).
In fact, features are often dependent on the context in which they
are made, with local knowledge affecting the definitions (Smith,
1996).

Geographic entities are not often a clearly demarcated entity,
because they are part of another object (Liu & Daneshmend, 2004).
Therefore, the individualization of entities is more important with
respect to the geographic domains that they can belong or
represent.

According to Bennett (2002), vagueness is inherent to the
geographical domain, with many features being context depen-
dent, as well as lacking precise definitions and boundaries.
Vagueness is not a defect of our communication language but
rather a useful and integral part. As a consequence, GIS cannot
handle multiple possible interpretations in a correct manner,
whereby the lack of this feature implies the creation of new tech-
niques that allow the handling of various meanings, one of these is
the inference based on reasoning.

Even though GISs are now a commonplace, the major problem is
that of interaction. With gigabytes of information stored either in
vector or raster format, present-day GISs do not sufficiently support
intuitive or common-sense oriented humanecomputer interaction.
Users may wish to abstract away from the mass of numerical data
and specify a query in a way, which is essentially or at least largely,
qualitative (Cohn & Renz, 2008). Arguably, the next generation GIS
will be built on concepts arising from Naïve Geography (Egenhofer
& Mark, 1995). Much of naïve geography should employ qualita-
tive reasoning techniques, perhaps combined with the provision of
“spatial query by sketch” (Egenhofer, 1997).

Qualitative reasoning is (QR) concerned not only with capturing
the everyday common-sense knowledge of the physical world, but
also the myriad equations used by engineers and scientists to
explain complex physical phenomenon, while creating quantitative
models (Weld& Kleer,1989). Themain goal of qualitative reasoning
is to make this knowledge explicit, so that given appropriate
reasoning techniques, a machine could make predictions, di-
agnostics and explanations of the behavior of physical systems in a
qualitative manner, without recourse to an often intractable or
perhaps unavailable quantitative model. According to that, note
that although one use for qualitative reasoning is that it allows
inferences to be made in absence of complete knowledge. It makes
this not by probabilistic or fuzzy techniques, which may rely on
arbitrarily assigned probabilities or membership values, but also by
refusing to differentiate between quantities unless there is suffi-
cient evidence to do so (Cohn & Hazarika, 2001).

The essence of QR is to find ways to represent continuous
properties of the world by discrete systems of symbols. One can
always quantize something continuously, but not all quantizations
are equally useful. One-way to state the idea is the relevance
principle: the distinctions made by a quantization must be relevant
to the kind of reasoning performed (Forbus, 1984). The resulting set
of qualitative values is termed a quantity space, in which indistin-
guishable values have been identified into an equivalence class.
There is normally a natural ordering (either partial or total) asso-
ciated with a quantity space, and one form of simple but effective
inference is to exploit the transitivity of the ordering relationship.
Another is to devise qualitative arithmetic algebras (Wolter &
Zakharyaschev, 2000), typically these may produce ambiguous
answers. Much research in the qualitative reasoning literature is
devoted to overcoming the detrimental effects on the search space
resulting from this ambiguity.

On the other hand, spatial reasoning in our everyday interaction
with the physical world, in most cases is driven by qualitative ab-
stractions rather than complete a priori quantitative knowledge.
Therefore, QR holds promise for developing theories for reasoning
about space. This justifies the increasing interest in the study of
spatial concepts from a cognitive point of view, which provoked the
birth of qualitative spatial reasoning within Artificial Intelligence
and also GIS (Cohn, Bennett, Gooday, & Gotts, 1997).

Research in QSR is motivated by a wide variety of possible ap-
plications areas including GIS, robotic navigation, high level vision,
spatial propositional semantics of natural languages, engineering
design, common-sense reasoning about physical systems and
specifying visual language syntax and semantics. There are other
application areas including qualitative document-structure recog-
nition (El-Geresy & Abdelmoty, 2006), applications in biology
(Schlieder, 1996) and domains where space is used as a metaphor
(Bennett, 1996; Knauff, Strube, Jola, Rauh, & Schlieder, 2004).

The goal of answering qualitative queries addresses an impor-
tant aspect of common-sense reasoning by human beings and it can
be found in many practical applications such as computer-aided
tutoring or diagram understanding. Because of the lack of
detailed numeric information, representations used by the ap-
proaches to data-poor problems are often carefully designed by
hand with respect to an automatic task (Rauh et al., 2005).

In this work, we propose amethodology to perform a qualitative
spatial reasoning, over a set of geospatial objects that are repre-
sented as input labels and belongs to a certain geographic domain.
Three algorithms that perform the spatial reasoning and the
inference tasks are proposed. They use the knowledge explicitly
defined into application ontology and conceptual frameworks. The
reasoning process is fundamentally based on the compute of to-
pological relationships, which are used to describe the behavior of a
geospatial object and their interaction with others.

The paper is organized as follows: Section 2 presents the state of
the art related to the work in this field. Section 3 describes the
proposed methodology to perform the qualitative spatial
reasoning. Section 4 depicts the experimental results, applying the
reasoning algorithms. The conclusion and futureworks are outlined
in Section 5.

2. Related work

Spatial reasoning is an important issue in many application
domains and it has been presented since the theory of points and
lines geometry, which is considered one of the oldest branched of
spatial reasoning (Renz, 2002). Other works on qualitative spatial
reasoning are preceded by proposals oriented to spatial represen-
tations, in which the goal is that they can be read and understood
by a machine (Sharma, 1996). In (Freksa, 1992) the importance of a
correct representation of the reality to perform an efficient spatial
reasoning process is described. In this case, machines are used to
represent knowledge in a formal approach. However, the captured
information must contain descriptions as close to how the human
beings perceive their environment (Egenhofer &Mark, 1995). Thus,
one of the main objectives of qualitative spatial reasoning is to find
appropriate methods to represent continuous properties in the
world, using a discrete symbols-based system (Cohn et al., 1997;
Cohn & Hazarika, 2001).

According to the basis of QSR, in (Mark & Frank, 1991) some
cognitive aspects of perception and knowledge representations as
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well as the explanation why spatial knowledge is of a particular
interest for cognitive science are explored. It is suggested that
“spatial inference engines” provide the basis for rather general
cognitive capabilities inside and outside the spatial domain. The
role of abstraction in spatial reasoning and the advantages of
qualitative spatial knowledge over quantitative knowledge are
discussed. Thus, in (El-Geresy & Abdelmoty, 2004) a general qual-
itative spatial reasoning engine (SPARQS) is proposed. Qualitative
treatment of information in large spatial databases is used to
complement the quantitative approaches tomanage those systems;
in particular, it is used for the automatic derivation of implicit
spatial relationships and in maintaining the integrity of the data-
base. To be of practical use, composition tables of spatial relation-
ships between different types of objects need to be developed and
integrated in those systems. Examples of the application of the
method using different objects and different types of spatial re-
lationships are presented and new composition tables are built
using the reasoning engine. Issues related to computerehuman
interaction (CHI) integrating qualitative spatial reasoning into GIS
are proposed. In (Schultz, Guesgen, & Amor, 2006) three CHI
challenges when combining qualitative and quantitative methods
are addressed. (1) Manage the subjective, ambiguous nature of
qualitative terms, (2) Provide a powerful, yet simple query system,
and (3) effectively visualizing a complex, fuzzy qualitative query
solution. A qualitative GIS called TreeSap is presented, which
demonstrates that, with the use of CHI principles, query tools can
be both powerful and accessible to non-expert users.

In (Randell, Cui, & Cohn, 1992), a study about the evolution of
qualitative spatial representations is presented. Authors proposed a
set of binary relations C(x,y). For instance, according to the demon-
stration, the relationship “x connects y” is defined as symmetric and
reflexive relationship. These kinds of relationships have beendefined
toworkwith spatial regions, where vagueness can bemore common
amonggeographicentities.Otherproposals focusedon incorporating
qualitative spatial reasoning into GIS have been developed (Bennett,
Cohn, & Isli, 1997). In this work, a logical approach based on formal
logical representations and reasoning algorithms for manipulating
qualitative spatial information is defined.

In (Wallgrün, 2010), the qualitative spatial reasoning methods
Fig. 1. General framework of
for learning the topological map of an unknown environment are
described. The proposal consists of developing a topological map-
ping framework that achieves robustness against ambiguity in the
available information by tracking all possible graph hypotheses
simultaneously. They exploit spatial reasoning to reduce the space
of possible hypotheses. The considered constraints are qualitative
direction information and the assumption that the map is planar.
The effects of absolute and relative direction information using two
different spatial calculi and combine the approach with a real
mapping system based on Voronoi graphs are investigated.

Spatial reasoning has been applied to topographical data with a
grounded geographical ontology (Mallenby & Bennett, 2007). The
method consists of handling the vagueness in the domain more
effectively. It uses methods of reasoning about the spatial relations
between regions within the data in order to use knowledge about
regions defined in an ontology and allow reducing the computation
of points location in the spatial relationships. In (Wang, Liu, Wang,
& Liu, 2006), the conception and implementation of a tool based on
spatial reasoning and spatial data mining (SRSDM) is presented. In
this work a new spatial knowledge representation that integrates
topology, direction, distance and size relations is proposed. SRSDM
includes the following features: extracting spatial relations,
frameworks for traditional or new data mining algorithms. As a
case study, SRSDM has been tested with agricultural data.

On the other hand, the problem to understand the semantics
based on spatial reasoning about oriented straight-line segments is
presented in (Moratz, Lücke, & Mossakowski, 2011). According to
the problem, it is difficult to establish a sound constraint calculus
based on these relations. In this work, authors present the results of
a new investigation into dipole constraint calculi, which uses
algebraic methods to derive sound results about the composition of
relations of dipole calculi. The method is denominated condensed
semantics, and it is an abstract symbolic model of a specific frag-
ment of our domain. It is based on the fact that qualitative dipole
relations are invariant under orientation preserving affine trans-
formations. The dipole calculi allows for a straightforward repre-
sentation of prototypical reasoning tasks for spatial agents. In the
same context, in (Wolter & Lee, 2010) an approach to qualitatively
process directional relations, based on constraints that represents
the RAIN methodology.
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positions in the plane is described.
Problems associated with the integration of data between

incongruent boundary systems are outlined in (Eagleson, Escobar,
& Williamson, 2003). The majority of spatial boundaries are
designed in an uncoordinated manner with individual organiza-
tions, generating individual boundaries to meet individual needs.
As a result, current technologies for analyzing geospatial informa-
tion, such as GISs, are not reaching their full potential. In response
to the problem of uncoordinated boundaries, the authors present
an algorithm for the hierarchical structuring of administrative
boundaries. This algorithm applies hierarchical spatial reasoning
theory to the automated structuring of polygons. In turn, these
structured boundary systems facilitate accurate data integration
and analysis whilst meeting the spatial requirements of selected
agencies. Moreover, the formalization and reasoning about spatial
semantic integrity constraints is presented in (Bravo & Rodriguez,
2012). The paper presents a formalization of spatial semantic
integrity constraints that provides a uniform specification of con-
straints used in practice, which is fundamental to assess the data
quality of spatial databases. The formalization extends traditional
notions of functional and inclusion dependencies to consider
spatial attributes. This enables to impose topological relations be-
tween spatial attributes and constraints on numerical attributes
that depend on spatial attributes. In (Grütter, Bauer-Messmer, &
H€ageli, 2008), two approaches to represent the Region Connection
Calculus (RCC) method in OWL-DL are described. The approaches
are used to infer the relationships between all connecting spatial
regions in any of the different RCC species using a complete cal-
culus. The application is focused on searching spatial objects using
an ontology.

In similar application context, the qualitative spatial reasoning
has been used for high-resolution remote sensing image analysis
(Brennan& Sowmya, 1998). In (Inglada&Michel, 2009), the Region
Connection Calculus technique is used for the analysis of satellite
imagery in order to fully exploit the richness of this kind of images.
The processing consists of detecting complex objects and studying
the relationships between the elementary objects that compose
them. A graph-based representation of the spatial relationships
between the regions of an image is used within a graph-matching
procedure in order to implement an object detection algorithm.

In robotic navigation and computer vision fields, there are
proposals for manipulation planning using qualitative spatial
reasoning. In (Westphal, Dornhege, W€olfl, Gissler, & Nebel, 2011),
an approach to generate heuristics for the probabilistic sampling
strategy from spatial plans that abstract from concrete metric data
is presented. These spatial plans describe a free trajectory in the
workspace of the robot on a purely qualitative level, i.e., by
employing spatial relations from formalisms considered in the
domain of qualitative spatial and temporal reasoning. A discussion
of such formalisms and constraint-based reasoning methods is
outlined. These formalisms can be applied to approximate
geometrically feasible motions.

3. RAIN methodology

RAIN is a methodology that consists of establishing a set of
approaches to perform a qualitative spatial reasoning task in se-
mantic descriptions of the geographic context, taking into account
a priori knowledge of the geospatial domain. Thus, this knowledge
is formalized by means of an application ontology, so that it can be
readable by a machine.

RAIN is focused on the conceptualization of the concepts and
relationships involved in a given domain. It is proposed to answer a
question about which domain belongs to a set of semantic de-
scriptions and what is the relevance of the concepts in that domain.
RAIN allows us to know the domain or context of a set of semantic
descriptions that could appear disjointed. The methodology is
composed of two stages: 1) Analysis and conceptualization and 2)
Inference. In the first stage, we obtain the a priori knowledge, which
is defined according to the reasoning requirements. In the second
stage, a set of ordered domains, considering the proximity or
similarity of the input descriptions is obtained. The general
framework of the RAIN methodology is shown in Fig. 1.

3.1. The analysis and conceptualization stage

The conceptualization task is based on GEONTO-MET approach
(Torres, Quintero, Moreno-Ibarra, Menchaca-Mendez, & Guzman,
2011), which is a methodology to build geographic domain ontol-
ogies. In Fig. 2, the conceptualization process is depicted.

By considering GEONTO-MET, two sets of axiomatic relations
A1¼{is,has,does} and A2¼{prepositions} are used, in order to
directly translate the relationships between concepts, as a part of
the conceptualization. In other words, the aim is to reduce the
axiomatic relationships in the ontology. For instance, topological
relations such as connect, contain, meet and among others are
defined as relational concepts in the conceptualization, whereupon
more expressivity, granularity and semantic richness in the repre-
sentation are obtained (Torres et al., 2011).

3.1.1. The abstraction process
This process is in charged of making an exhaustive revision over

geographic objects that are involved in the set of geographic do-
mains, in order to carry out an abstraction that defines a priori
knowledge. Information of the domains has been gathered
from Kaab-Ontology,1 defined in (Torres et al., 2011). The advantage
of this ontology domain is that we can find abstract entities and
their relationships. In addition, definitions of the dictionary of
National Institute of Statistics, Geography and Informatics
of Mexico (INEGI) (INEGI, 1996) and National Center of Biomedical
Ontologies (NCBO) are used. The result of the process is to obtain
the essential information of geographic objects and domains that
are of interest for the reasoning. In Fig. 3, a fragment of the pro-
posed ontology, using Kaab-Ontology is depicted.

3.1.2. The synthesis process
This process receives the objects and domains from the

abstraction task, which will be used in the reasoning stage. It is
important to point out that information is not structured yet;
therefore, it is necessary to define each domain according to its
object interaction or relationship involved in the domain. Thus, a
topological relation is defined between the geographic objects. A
hierarchical relation described among them, considering their
properties and synonyms in souch domains as well as in geographic
objects, represented in this relationship.

In this process a mapping of the geographic objects is carried
out, with respect to the defined concepts in the application
ontology. The mapping is performed for starting the population of
the ontology with instances.

Kaab-Ontology contains a set of abstract entities of the
geographic domain, which aids to delimitate the domain and
restrict the number of concepts that are involved in each one. Fig. 4
shows the synthesis process, where we can appreciate that the set
of concepts and topological relations allow the definition of do-
mains set, in which the domains interact with the ontology to
extract the instances that will generalize the process. In other
words, from the description of many specialized concepts, a general
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Fig. 3. Fragment of the RAIN ontology.
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concept is obtained, which describes in a global form the concepts
in a given domain.

Moreover, in Fig. 5 the mapping approach related to link
instances with Kaab and RAIN ontologies is presented.
3.1.3. The semantic assessment process
The semantic assessment process uses the ontology and a set of

tables for obtaining information with respect to concepts defini-
tion, their relationships with other concepts as well as their do-
mains, rules and constraints. The goal of this task is to refine and
assign a semantic value to each domain, taking into account the
construction of concepts tables, which are composed of the prop-
erties, location in the hierarchy, names and synonyms, as well as a
synonyms concepts table, a domains table, a synonyms domains
table, a frequency table of concepts in the domains, a composition
table of ordered topological relations according to their relevance,
and finally a semantic refinement table in order to improve the
inference method based on the feedback. These tables are defined
as follows.
3.1.3.1. The concepts table. In this table, all the possible concepts
that are part of each domain are shown. It allows us to explicitly
express the characteristics that each concept contains. The table
has information about the synonyms such as concepts and prop-
erties that are generally known. Additionally, the location of each
concept in the hierarchy is known, identifying the concept nodes:
father and child of each one. Every concept can have n number of
children, but they only have one father. Thus, the relationships that
can interact on that concept are expressed in the hierarchy too.
Finally, application ontology with the properties, concepts that
contain the domains and the hierarchy of each concept is generated
(see Fig. 6).

On the other hand, let us describe the definitions for generating
the concepts table (see Table 1) as follows.

For a concepts table, let ci,j be a concept that belongs to the set C,
whereby a function father(ci,j) is proposed to return a concept cp,q,
which is defined as the father of ci,j.

Thus, let ci,j be a concept related to the function child(ci,j) that
returns the concept(s) cp,q, which is (are) child (children) of ci,j.
Therefore, the function is defined as follows: child(ci,j)¼cp,q.



Fig. 4. Representation of the synthesis process.

Fig. 5. The mapping approach.

M. Torres et al. / Computers in Human Behavior 59 (2016) 115e133120
Let Pi,j be the set of properties that directly belongs to a concept
ci,j, of a particular domain dijdi2D, which is defined by
Pi,j¼p(i,j,1),p(i,j,2),/,p(i,j,n).

According to the relationships, let Ri,j be a set of topological
relations that are associated to a concept ci,j of a particular domain
dijdi2D, which is defined by Ri,j¼r(i,j,1),r(i,j,2),/,r(i,j,n).

By taking into account those definitions, the function exist_-
concept receives a label eti and returns the identification number of
the interest concept. Otherwise, if the concept does not exist, a
Boolean value is returned (“false” in this case). The function is
defined as follows.

exist conceptðetiÞ ¼
�

cj 0 � j � n
false dof

In order to generate the concepts table, it is necessary to define
the function exist_synonymous, which receives a label and returns
the number of the interest concepts or their relevancy. Otherwise, if
the concept does not have any synonymous, the function returns a
Boolean value (“false” in this case), when any concept has a syn-
onymous. It is defined as follows.

exist synonymousðetiÞ ¼
�

cj 0 � j � n
false dof
3.1.3.2. The frequency table of concepts in the domains.
According to the collected information of each domain previously
defined, there is a set of concepts that belongs to a particular
domain. Thus, we can obtain the frequency of the concepts in the
geographic domains.

Therefore, let D be the set of domains, where d is a particular



Fig. 6. RAIN ontology obtained from the semantic assessment process.

Table 1
The concepts table.

Concept
name

Synonyms Property Father Child Topological
relation

ci,1 Si,1 Pi,1 father(ci,1) child(ci,1) Ri,1
ci,2 Si,2 Pi,2 father(ci,2) child(ci,2) Ri,2
/ / / / / /

ci,n Si,n Pi,n father(ci,n) child(ci,n) Ri,n
/ / / / / /

cm,n Sm,n Pm,n father(cm,n) child(cm,n) Rm,n
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geographic domain that has been defined by the following
expression: D¼d1,d2,…,dn. Now, let C be the set of domains, in
which c is a concept involved in the geographic domain, defined by
C¼c1,c2,…,cn.

By using the previous definitions, we are able to build the
concepts frequency table in the domains, which contains all the
domains that can be submitted in the ontology O, and also the
concepts located in each domain (see Table 2).

In order to simplify the notation of the concepts, we defined a
function that relates to a concept with the identification number of
the domain, as well as the index of the concept at the same domain.
The function concept receives two parameters, which describes the
number of the domain and the number of the concept, returning
the number of the interest concepts. Otherwise, it returns a Boolean
Table 2
The frequency table of concepts in the domains.

Domain Concepts

D1 C1 ¼ fcð1;1Þ; cð1;2Þ;/; cð1;n1Þg
D2 C1 ¼ fcð2;1Þ; cð2;2Þ;/; cð2;n2Þg
D3 C1 ¼ fcð3;1Þ; cð3;2Þ;/; cð3;n3Þg
/ /

Dm C1 ¼ fcðm;1Þ; cðm;2Þ;/; cðm;nmÞg
value (“false”) when there is not any concept. The function concept
is defined as follows: concept(d,c)¼cj,kj0�j�m,0�k�n.

3.1.3.3. The synonyms domain table. This table allows us to know
the possible alias that the particular domain could have and the
direct relationship with its search (see Table 3). Therefore, let Si be
the set of synonyms for a specific domain di, which is defined by
Si¼{s(i,1),s(i,2),…,s(i,n)}.

3.1.3.4. The composition table of topological relations. In order to
semantically process the geospatial information, it is necessary to
obtain the set of topological relations that are directly involved
between geographic objects in each domain for defining their
relevance. The goal to process these relationships is based on
describing the behavior or interaction of those objects, because the
semantics is implicitly defined in the topological relations (Kurata
& Egenhofer, 2006; Budak Arpinar et al., 2006; Euzenat, Gomez-
Perez, Guarino, & Stuckenschmidt, 2002). According to the above,
the generation of a composition table of topological relations is
proposed. This table is ordered, considering its relevance inside of
some particular domain. The composition table is presented in
Table 4.

Now, let rt be a relationship of the composition table, which is
integrated by the concepts ci and ci,cj2C and rt2R, denoted by
rt¼ciricj.
Table 3
The synonyms domain table.

Domain Concepts

D1 S1 ¼ fsð1;1Þ; sð1;2Þ;/; sð1;n1Þg
D2 S1 ¼ fsð2;1Þ; sð2;2Þ;/; sð2;n2Þg
D3 S1 ¼ fsð3;1Þ; sð3;2Þ;/; sð3;n3Þg
/ /

Dm S1 ¼ fsðm;1Þ; sðm;2Þ;/; sðm;nmÞg



Table 5
The semantic refinement table.

Input labels Output domains

E1¼{e11,e12,/,e1n} output1¼(D)
E2¼{e21,e22,/,e2n} output2¼(D)
E3¼{e31,e32,/,e3n} output3¼(D)
/ /

Em¼{em1,em2,/,emn} outputm¼(D)

Table 4
The composition table of topological relations.

Domain Relevance labels

Necessary Common Rare

Dt,1 NED1 COD1 RAD1

Dt,2 NED2 COD2 RAD2

Dt,3 NED3 COD3 RAD3

/ / / /

Dt,m NEDi CODi RADi
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Let N be the set of necessary relationships presented in the
geographic domain i, where the presence of those relationships in
the domain indicates that they are always linked to interact in a
particular domain NDi¼{rtN1,rtN2,…,rtNn}.

Let C be a set a common relationships presented in the
geographic domain i, where the presence of those relationships in
the domain indicates that those concepts are commonly found in a
particular domain, such that CDi¼{rtC1,rtC2,…,rtCn}.

Let RA be a set of rare relationships presented in the geographic
domain. Their presence in the domain establishes that is unlikely to
find them in the domain. However, it is sometimes possible to find
it out in very particular domains. Therefore, the set is defined as
follows: RADi¼{RtRA1,RtRA2,…,RtRAn}.
Fig. 7. Conceptual framewor
The domain of composition table Dti is composed of the union of
the setsNDi, CODi and RADi, which is denoted byDti¼{NDi∪CODi∪RADi}.
After obtaining the composition table, we proceed to rank the con-
cepts and their topological relations, according to their relevance in
the domain. It points out that relationships of the set N are a
fundamental feature to define the domain. Thus, the common re-
lationships are not fundamental features, because they could have
less relevance in the definition of the domain, such that it is not a
requirement to count with those ones. Similarly, the relationships of
the set RA, are not indispensable for defining the geographic domain;
in addition, their relevance is below of the set C and it has also less
relevance than the set N.

In consequence, the function relevant is defined. It receives a
triplet that is composed of a pair of concepts and a geographic
domain. These items describe the number of domains and the
number of the concepts, in the case of the triplet, it returns as result
the relevance relationship of the triplet of our interest, which could
be “necessary”, “common” or “rare”. The function is defined by the
following expression:

relevantðd; ca; cbÞ ¼
�

true rtj ¼ fnecessary; common; rareg
false rtj ¼ ∅

3.1.3.5. The semantic refinement table. This table is defined to store
the labels that are received as the input of the method in order to
validate the algorithms proposed in the inference stage. Thus, the
labels are assigned to a specific domain, after applying some
qualitative spatial reasoning algorithms. This is done, when there is
a validation performed by the user (see Table 5).

According to above, let return_ref be a function that receives set
of input labels Ei¼{e11,e12,…,e1n}, which semantically describe
either one or more specific domains, returning as a result a set of
ordered output domains, considering the closeness defined by the
semantic similarity with respect to the labels description defined
k of the inference stage.
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by Exit(D). Therefore, the function is defined as follows:

return ref ðEiÞ ¼
�

true ExitðDÞj0 � i � m
false dof
3.2. The inference stage

The inference stage is composed of four tasks that interact
together to analyze, describe and deduce which domain belongs to
a set of geographic objects represented by labels. The first task
consists of establishing a mapping approach, which receives a set of
labels as an input. This set is used to search a concept defined in the
ontology and that is directly related to those labels. Later, concepts
that have been mapped and related to the knowledge base in the
ontology are obtained. The second task consists of defining a set of
qualitative spatial reasoning approaches, which are determined by
three algorithms: (1) conceptual frequency, (2) relevance, and (3)
semantic genealogy.

These algorithms carry out the inference process, considering as
an input a set of concepts described in the ontology (knowledge
base). The third task is proposed to define a comparison of the al-
gorithms, based on the results of applying each method according
to the degree of effectiveness, which could change with the user
interaction.

Finally, the semantic refinement task consists of providing an
answer to the user, taking into account a validationprocess, inwhich
the feedback plays an important role to examine the semantic
richness of the representation. The obtained inference is stored in
the knowledge base to be part of the conceptualization and deter-
mine the degree of effectiveness of the reasoning algorithm. In Fig. 7,
a conceptual framework of inference stage is depicted.
3.2.1. The mapping approach
It is an algorithm designed to receive the input labels and
localize if there are concepts related to those labels in order to
automatically store or populate in the ontology as instances of a
concept class (synthesis process). However, it is necessary to verify
if there is a previous result for this set of labels, using the semantic
refinement table. A set of existing inputs inside the a priori
knowledge, or a set of ordered domains D is obtained with this
approach. In case that labels have already been previously added
and assesed by the user, they will be stored as a part of the
conceptualization in ontology O. The algorithm to perform the
mapping is presented in Algorithm 1.
3.2.2. The qualitative spatial reasoning approaches
We propose three algorithms in order to perform qualitative

spatial reasoning. The conceptual frequency approach is in charged
of counting the occurrences of each concept in a geographic
domain. The relevance approach searches the relationship that ex-
ists between the concepts, which are received as input, and their
importance in the geographic domain. The semantic genealogy
approach consists of obtaining the father concepts, computing the
hierarchy of concepts that involves to a geographic object repre-
sented by the domain.
3.2.2.1. The conceptual frequency algorithm. This algorithm consists
of counting the number of occurrences to compute the frequency
that each set of concepts appears in a particular domain. This
process is called conceptual frequency.

In this algorithm the output is sorted from the highest to the
lowest value, according to their repetitions. It receives concepts
that have been previously verified by means of the mapping algo-
rithm. This guarantees that the set of concepts is stored in the
knowledge base.

Later, it is necessary to use the concepts frequency table in the
domains in order to search how many times each concept appears
in each geographic domain that contains the knowledge base. In
Algorithm 2, the conceptual frequency algorithm is presented.
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3.2.2.2. The relevance algorithm. The relevance algorithm receives
three parameters: a set of input concepts, in which if the concepts
exist, then they are obtained from the mapping approach, the
second is a set of relevance composition table in the domain, and
the third is a mapping vector.

This algorithm is used to rank the importance degree of the
concepts in the domain. It provides the highest semantic richness
to the concepts in each particular domain. It also performs a search
of all the concepts that are received as input in the relevance
composition table of each domain. The goal is to know if those
concepts are related with others. In Algorithm 3, the relevance al-
gorithm is described for a set of concepts that represent geographic
objects.
3.2.2.3. The semantic genealogy algorithm. This algorithm is
divided into three tasks. The first is to search the father and chil-
dren concepts of each one of the input concepts. The second task
consists of using the relevance algorithm in order to obtain the
domain. In this case, only the first result obtained by the relevance
algorithm will be considered. The last task performs a sum of the
outputs to show the domain that have appeared most with the
given inputs into the relevance algorithm. The result of this algo-
rithm is either a domain or an empty set, indicating that the domain
has not been found.

The process of the semantic genealogy algorithm is the
following: first, if the mapping vector VM is false, then it receives
the input concepts. Consequently, the father class of each one of the
input n�concepts is searched. Later, it substitutes the i�th concept
by the father concept. The goal is to invoke the relevance algorithm
with the new set of labels. The obtained result from the relevance
algorithm is stored as the first element obtained in an output
vector, which contains the domain with the frequency that such
domain is repeated. This process is iterative according to the



Fig. 8. Architecture of the RAIN system.

Fig. 9. Conceptual particular framework.
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Fig. 10. Conceptual general framework.
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number of father concepts that are found in the analysis. The pro-
cedure for the children concepts of each input concept is similar,
but the difference is that each input concept can have a m number
of children concepts, such that each son concept will be an indi-
vidual input for the conceptual frequency algorithm. The semantic
genealogy algorithm is described in Algorithm 4.
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4. Experimental results

This section presents the results of applying the RAIN method-
ology. They are outlined by each stage defined in this work.

4.1. System architecture

The architecture of the system is depicted in Fig. 8. It is
composed of three elements. The first is the repository where the
conceptual frameworks are processed. The second is in charged of
loading the persistent model of database, which is built from the
ontology. The third is the input of the system that is directly related
to the inference stage. It consists of querying information of the
persistent model in order to return the general concept to a certain
domain or geographic context.

4.2. Conceptual frameworks

In order to represent the knowledge, we propose conceptual
frameworks as a basic structure, which are able to be readable by a
machine. In this work, we have chosen the use of conceptual
frameworks described in (Minsky, 1974, 1980). The implementation
Fig. 11. The persistent model gene
of these structures is based on XML meta-language (Zambon &
Sekler, 2007), because according to its structure, it is possible to
carry out a hierarchical classification and organization of the a
priori knowledge. The proposed conceptual frameworks are divided
into two types: particular and general.

The conceptual particular framework (see Fig. 9) contains infor-
mation of the concepts that directly integrate and represent a
specific geographic domain, with data that correspond to the name,
synonyms, father and children concepts.

The conceptual general framework (see Fig. 10) is based on defi-
nitions of a given domain by means of the topological relations,
which exist between concepts that describe the domain and their
synonyms. This type of framework defines a context for the con-
cepts and synonyms that are used in the reasoning task.
4.3. Persistent model of the ontology-based design

The persistent model has been built using the RAIN ontology, in
order to store the translation of concepts, relationships and prop-
erties, as well as the instances of these items into a repository. It is
composed of nine tables that are designed to receive information
from the analysis and conceptualization stage by means of the
rated from the RAIN ontology.
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conceptual frameworks.
The description of tables that compose the persistent model,

shown in Fig.11 is the following: the concepts table, which contains
information related to the name of the concept, location in the
hierarchy (father and children). The synonyms table stores infor-
mation about the known names of the concepts. The table of
properties contains the characteristics of each concept. The
Fig. 12. The main hierarchy of cl

Fig. 13. The RAIN
composition table stores information related to topological re-
lations that are presented between concepts, domain that they
belong to, and the level of relevance inside the domain (necessary,
common and rare relationships). Finally the table of input labels
contains information of the labels that is received by the inference
stage.

As we have mentioned above, the model is built considering the
asses in the RAIN ontology.

application.
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RAIN ontology (see Fig. 12). The RAIN ontology describes the defi-
nition of concepts and topological relations that represent
geographic objects and their behavior among them inside the
geographic domains. This ontology is also implemented according
to the Kaab ontology and using the GEONTO-MET methodology for
its building (Torres et al., 2011).
4.4. The RAIN application

The RAIN application is composed of four elements, which are
depicted in Fig. 13. The first element points out the input of the
system to introduce the a priori knowledge, using the conceptual
frameworks (see number “1”). The second element (see number
“2”) is the input to add the set of labels in order to infer the domain
that labels belong to. In this section, the algorithms to apply qual-
itative spatial reasoning and the method for comparison the results
are located. The third element (see number “3”) shows the opera-
tions that are performing over the repository. The forth element
Fig. 14. Results of the conceptual frequency algorithm.

Table 7
The composition table of topological relations.

Table 6
The table of concepts frequency.

Domain Frequency Output

River Delta 7 {river, lake, green area, land sea,
body of water, island, sandy land}

Coast 3 {sea, sandy land, river}
(see number “4”) presents the results obtained by the RAIN appli-
cation, depending on the selected algorithm.
Domain Concept Topological relation Concept Relevance

River Delta River Connect Sea Necessary
River Delta Island Share Sea Common
River Delta Sandy land Connect Sea Rare
Coast Sandy land Connect Sea Necessary
Coast River Cross Green area Common
Coast River Connect Sea Common
4.5. Test and results obtained by the qualitative spatial reasoning
algorithms

This test presents the results obtained by applying the concep-
tual frequency algorithm, using the geographic domains river delta
and coast. First, we load the a priori knowledge to the repository of
the RAIN application, using both conceptual frameworks (identified
by number “1”). In Table 6, the frequency of each concept for the
mentioned domains is presented.

Therefore, the input labels used in the test are the follows: <sea,
sandy land, river, island, green area>. The output obtained was
<river delta>, because it was the domain with more occurrences
and in the second place the domainwas<coast>, with 3 concepts in
this domain. In Fig. 14, the result of conceptual frequency algorithm
is depicted. We can appreciate the number of occurrences directly
from the ontology in each domain per concept.

However, this approach presents a problem that is directly
related to the domains. When the user introduces labels that are
located in both domains (i.e., <sea, sandy land>), the same output is
obtained. In order to solve the ambiguity, a distinction among the
label is performed, taking into account the importance degree in-
side the domain. Thus, the relevance algorithm is proposed to solve
the repetitions of occurences. It considers the definition of the
concepts according to their topological relations that are implicitly
involving them. The composition of topological relations is pre-
sented in Table 7.

Now, it is possible to repeat the test when the user
introduces <sea, sandy land>. When the relevance algorithm is
applied, the first obtained domain is <coast>, followed by <river
delta>. The fact is that definition of each one of the domains, both
concepts exist, but only in <coast>, a necessary relationship is



M. Torres et al. / Computers in Human Behavior 59 (2016) 115e133130
presented, which is defined by “sandy land shares sea”, whereas
the relevance in the domain of “river delta is less”. It is unusual to
find this kind of relationship in that domain or context. In Fig. 15,
the result of applying the relevance algorithm is shown.

On the other hand, when the user introduces concepts that are
not explicitly defined in the domains; for instance, let <perennial,
sea> be input labels, where “perennial” belongs to subclass of
“river”, the semantic genealogy algorithm is used in order to search
the father of that concept and subsequently execute the relevance
algorithm for obtaining the result. Moreover, it is necessary to
search the children classes and verify whether those definitions
exist. The final step consists of repeating this procedure for the
concept “sea”. In Fig. 16, the results of applying the semantic
Fig. 15. Results of the re

Fig. 16. Results of the semantic genealogy algorithm.

Table 8
Comparison of the qualitative spatial reasoning algorithms.

Input labels Conceptual frequency

<Sea, sandy land> River delta, Coast
<sea, sandy land, river, island, green area> River delta
<River, sea> River delta, Coast
<Perennial, sea> River delta, Coast
<Composition, sea> River delta
genealogy algorithm is depicted.
In Table 8, we present the summary with respect to the results

obtained from the three qualitative spatial algorithms. We can
appreciate that the best result is generated by the relevant algo-
rithm, because it has three correct answers with respect to the other
algorithms. The reason is that it considers the topological relations
between the geographic concepts in order to infer the domain. The
semantic genealogy algorithm produces acceptable inferences,
because it establishes the neighborhood in the ontological hierar-
chy of the concepts (father and children). The conceptual frequency
is the algorithm that presents problems, when some labels are
located in both domains, because the occurrence of the concepts
does not determine in an adequate way the domain for a set of
levance algorithm.
labels. In Fig. 17, the process to compare and validate the results of
the three algorithm is depicted.

5. Conclusion and future works

In this work, a methodology mainly composed of three ap-
proaches to carry out an inference process is described. These ap-
proaches are focused on performing qualitative spatial reasoning
into geographic objects descriptions.

Thus, a knowledge base is generated by means of application
ontology, which has been built in OWL, using the GEONTO-MET
methodology. This conceptual structure represents the a priori
Relevance Semantic genealogy Correct inference

Coast No results Coast
River delta Coast River delta
River delta No results River delta
No results River delta River delta
No results Coast Coast



Fig. 17. Comparison and validation process of the qualitative spatial algorithms.
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knowledge of different geographic domains. Moreover, we propose
the use of conceptual frameworks to represent explicitly the
knowledge of any domain, in order to structure and organize the
semantics of the geographic context. These frameworks describe
the synonyms, names, relationships, properties and other charac-
teristics related to geographic objects of any particular geographic
domain.

We argue that any qualitative spatial reasoning algorithm con-
sists of two tasks: 1) a searching task and 2) a ranking task based on
the relevance of the characteristics or relationships. In addition, we
assert that a priori knowledge is a formal structure, which contains
the vocabulary, rules for the language and a set of logical proposi-
tions that allow us to fundamentally solve problems associated to
ambiguity, uncertainty and vagueness of the geographic data.

The inference stage depends directly on particular data that are
stored in the conceptual frameworks, which is denoted by a priori
knowledge. In fact, the qualitative spatial reasoning algorithms are
complementary to each one. The best result is provided by the
relevance approach, because it considers a priori knowledge such as
the topological relationships and properties defined in conceptual
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frameworks. The semantic genealogy is iterative in order to
consider the execution of the conceptual frequency and relevance
approaches. In the case that the knowledge is not defined in the
conceptual framework, it would not be possible to infer about the
conceptual structure for determining the concepts and their
interaction in a particular domain.

Moreover, a definition of spatial reasoning is proposed. It con-
sists of transforming a descriptive representation in another more
general, taking into account the semantics of the topological re-
lationships. It is important to note that the process performed in
this work, attempts to generalize toward a superior class or concept
in an inverse sense to the semantic granularity that is defined by a
conceptual representation, whereupon a machine can process the
geographic entities, in a similar way that we as human beings
cognitively process and understand the real world in a generalized
manner. This fact is implicitly related to compare the results ob-
tained by our approach. According to the above, we consider that
the best evaluation is performed by a domain expert, who has the
knowledge to say if the inferred results are coherent and precise.

Future works are focusing on making more tests in different
geographic domains as well as other totally different contexts. It is
necessary to compare the inferred results provided by our meth-
odology with other semantic reasoners such as Pellet, DLog, OWL-
DL, RacerPro, Cyc, FaCTþþ, etc., in order to evaluate different results
and compare them, computing the same tests in such reasoners.
Other work is oriented towards enriching the conceptual frame-
works as well as the application ontology with more geometric,
direction and mereological relationships for improving the infer-
ence approaches, considering more semantic granularity to
generalize concepts and determine a specific domain.
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